e content for students of patliputra university

B. Sc. (Honrs) Part 1paper 1

Subject:Mathematics

Title/Heading of topic:Fundamental theorem of

Algebra

By Dr. Hari kant singh

Associate professor in mathematics

Rrs college mokama patna

# Fundamental theorem of Algebra Every polynomial equation with real coefficients has at least one root

# Every equation f(x) = 0 of the $n^{th}$ degree has n roots

Let f(x) be the polynomial  $a_0x^n + a_1x^{n-1} + ... + a_n$ .

We assume that every equation f(x) = 0 has at least one root real or imaginary Let  $\alpha_1$  be a root of f(x) = 0.

Then f(x) is exactly divisible by  $x - \alpha_1$ , so that

$$f(x) = (x - \alpha_1) \phi_1(x)$$

where  $\phi_1(x)$  is a rational integral function of degree n – 1.

Again  $\phi_1(x) = 0$  has a root real or imaginary and let that root be  $a_2$ .

Then  $\phi_1(x)$  is exactly divisible by  $x - \alpha_2$  so that

$$\phi_1(x) = (x - \alpha_2) \phi_2(x)$$

where  $\phi_2(x)$  is a rational integral function of degree n – 2.

$$\therefore f(x) = (x - \alpha_1) (x - \alpha_2) \phi_2(x).$$

By continuing in this way, we obtain

$$f(x) = (x - \alpha_1)(x - \alpha_2)....(x - \alpha_n) \phi_n(x)$$

where  $\phi_n(x)$  is of degree n – n, i.e., zero

 $: \phi_n(x) \text{ is a constant.}$ 

Equating the coefficients of  $x^n$  on both sides we get

$$\phi_n(x) = \text{coefficients of } x^n$$

$$= a_0$$

$$f(x) = a_0 (x - \alpha_1)(x - \alpha_2).... (x - \alpha_n).$$

Hence the equation f(x) = 0 has n roots, since f(x) vanished when x has any one of the values  $\alpha_1, \alpha_2, \ldots \alpha_n$ . If x is given any value different from any one of these n roots, then no factor of f(x) can vanish and the equation is not satisfied. Hence f(x) = 0 cannot have more than n roots.

## In an equation with rational coefficients, imaginary roots occur in pairs.

Let the equation be f(x) = 0 and let  $\alpha + i\beta$  be an imaginary root of the equation. We shall show that  $\alpha - i\beta$  is also a root.

We have 
$$(x - \alpha - i\beta)(x - \alpha + i\beta) = (x - \alpha)^2 + \beta^2$$
 .....(1)

If f(x) is divided by  $(x - \alpha)^2 + \beta^2$ , let the quotient be Q(x) and the remainder be Rx + R'

Here Q(x) is of degree (n-2).

$$f(x) = \{(x - \alpha)^2 + \beta^2\} Q(x) + Rx + R' \qquad ......(2)$$

Substituting  $(\alpha + i\beta)$  for x in the equation (2), we get

$$\begin{split} f(\alpha+i\beta) &= \{(\ \alpha+i\beta-\alpha)^2+\beta^2\}\ Q(\alpha+i\beta) + R(\alpha+i\beta) + R' \\ &= R(\alpha+i\beta) + R' \end{split}$$

But  $f(\alpha + i\beta) = 0$  since  $\alpha + i\beta$  is a root of f(x) = 0.

Therefore

$$R(\alpha + i\beta) + R' = 0.$$

Equating to zero the real and imaginary parts

$$R\alpha + R' = 0$$
 and  $R\beta = 0$ .

Since  $\beta \neq 0$ , R = 0 and so R' = 0

$$f(x) = \{(x - \alpha)^2 + \beta^2\}Q(x).$$

 $\alpha - i\beta$  is also a root of f(x) = 0.

#### **Solved Problems**

1. Form a rational cubic equation which shall have for roots 1,  $3 - \sqrt{-2}$ . Solution.

Since  $3 - \sqrt{-2}$  is a root of the equation,  $3 + \sqrt{-2}$  is also a root. So

we

have to form an equation whose roots are 1,  $3 - \sqrt{-2}$ ,  $3 + \sqrt{-2}$ .

Hence the required equation is  $(x-1)(x-3-\sqrt{-2})(x-3+\sqrt{-2})$ 

=0

+ 2.

1.

$$(x-1)\{(x-3)^2+2\}=0$$

$$(x-1)(x^2 - 6x + 11) = 0$$

$$x^3 - 7x^2 + 17x - 11 = 0.$$

2. Solve the equation  $x^4 + 4x^3 + 5x^2 + 2x - 2 = 0$  of which one root is  $-1 + \sqrt{-1}$ . Solution.

Imaginary roots occur in pairs. Hence  $-1 - \sqrt{-1}$  is also a root of the equation.

Therefore the expression on the left side of equation has the factors

$$(x+1-\sqrt{-1})(x+1+\sqrt{-1}).$$

The expression on the left side is exactly divisible by  $(x + 1)^2 + 1$ , i.e.,  $x^2 + 2x$ 

Dividing  $x^4 + 4x^3 + 5x^2 + 2x - 2$  by  $x^2 + 2x + 2$ , we get the quotient  $x^2 + 2x - 2$ 

Therefore  $x^4 + 4x^3 + 5x^2 + 2x - 2 = (x^2 + 2x + 2)(x^2 + 2x - 1)$ .

Hence the other roots are obtained from  $x^2 + 2x - 1 = 0$ .

Thus the other roots are  $-1 \pm \sqrt{2}$ .

3. Show that  $\frac{a^2}{x-\alpha} + \frac{b^2}{x-\beta} + \frac{c^2}{x-\gamma} - x + \delta = 0$  has only real roots if a, b, c,  $\alpha$ ,  $\beta$ ,  $\gamma$ ,  $\delta$  are real.

Solution.

If possible let p + iq be a root. Then p - iq is also root.

Substituting these values for x, we have

$$\frac{a^2}{p+iq-\alpha} + \frac{b^2}{p+iq-\beta} + \frac{c^2}{p+iq-\gamma} - p - iq + \delta = 0 \quad .....(1)$$

$$\frac{a^2}{p - iq - \alpha} + \frac{b^2}{p - iq - \beta} + \frac{c^2}{p - iq - \gamma} - p + iq + \delta = 0 \quad .....(2)$$

Substituting (2) from (1), we get

$$-\frac{2a^{2}iq}{(p-\alpha)^{2}+q^{2}} - \frac{2b^{2}iq}{(p-\beta)^{2}+q^{2}} - \frac{2c^{2}iq}{(p-\gamma)^{2}+q^{2}} - 2iq = 0$$

$$-2iq\left\{\frac{a^2}{(p-\alpha)^2+q^2}+\frac{b^2}{(p-\beta)^2+q^2}+\frac{c^2}{(p-\gamma)^2+q^2}+1\right\}=0$$

This is only possible when q=0 since the other factor cannot be zero. In that case the roots are real.

# In an equation with rational coefficients irrational roots occur in pairs.

Let f(x) = 0 denotes the equation and suppose that  $a + \sqrt{b}$  is a root of the equation where a and b are rational and  $\sqrt{b}$  is irrational. We now show that  $a - \sqrt{b}$  is also a root of the equation

$$(x - a - \sqrt{b})(x - a + \sqrt{b}) = (x - a)^2 - b$$
 ......

If f(x) is divided by  $(x - a)^2 - b$ , let the quotient be Q(x) and the remainder be Rx + R'.

Here Q(x) is a polynomial of degree (n-2).

(1)

$$f(x) = \{(x-a)^2 - b\} Q(x) + Rx + R' \qquad \dots (2)$$

Substituting  $a + \sqrt{b}$  for x in (2), we get

$$f(a + \sqrt{b}) = \{(a + \sqrt{b} - a)^2 - b\} Q(a + \sqrt{b}) + R(a + \sqrt{b}) + R'$$

$$= R(a + \sqrt{b}) + R'$$

but  $f(a + \sqrt{b}) = 0$ , since  $a + \sqrt{b}$  is a root of f(x) = 0.

$$\therefore Ra + R' + R\sqrt{b} = 0.$$

Equating the rational and irrational parts, we have

$$Ra + R' = 0$$
 and  $R = 0$ .

$$\therefore R' = 0.$$

Hence 
$$f(x) = {(x-a)^2 - b}Q(x)$$
.

$$= (x - a - \sqrt{b})(x - a + \sqrt{b})Q(x).$$

$$\therefore$$
 a –  $\sqrt{b}$  is a root of f(x) = 0.

### **Solved Problems**

**Example 1.** Frame an equation with rational coefficients, one of whose root is  $\sqrt{5} + \sqrt{2}$  Solution.

Then the other roots are 
$$\sqrt{5} - \sqrt{2}$$
,  $-\sqrt{5} + \sqrt{2}$ ,  $-\sqrt{5} - \sqrt{2}$ 

Hence the required equation is  $(x-\sqrt{5}-\sqrt{2})(x-\sqrt{5}+\sqrt{2})(x+\sqrt{5}+\sqrt{2})(x+\sqrt{5}-\sqrt{2})$ = 0

i.e. 
$$\{(x - \sqrt{5})^2 - 2\}$$
  $\{(x + \sqrt{5})^2 - 2\} = 0$   
i.e.  $(x^2 - 2x\sqrt{5} + 3)(x^2 + 2x\sqrt{5} + 3) = 0$   
i.e.  $(x^2 + 3)^2 - 4x^2.5 = 0$   
i.e.  $x^4 - 14x^2 + 9 = 0$ .

**Example 2.** Solve the equation  $x^4 - 5x^3 + 4x^2 + 8x - 8 = 0$  given that one of the roots is  $1 - \sqrt{5}$ .

Solution.

Since the irrational roots occur in pairs,  $1 + \sqrt{5}$  is also a root. The factors corresponding to these roots are

$$(x-1+\sqrt{5})(x-1-\sqrt{5})$$
, i.e. $(x-1)^2-5$   
i.e.  $x^2-2x-4$ .

Dividing  $x^4 - 5x^3 + 4x^2 + 8x - 8$  by  $x^2 - 2x - 4$ , we get the quotient  $x^2 - 3x + 2$ .

Therefore 
$$x^4 - 5x^3 + 4x^2 + 8x - 8 = (x^2 - 2x - 4)(x^2 - 3x + 2)$$
  
=  $(x^2 - 2x - 4)(x - 1)(x - 2)$ 

The roots of the equation are  $1 \pm \sqrt{5}$ , 1, 2.

Example 3. Form the equation with rational coefficients whose roots are

(i) 
$$1 + 5\sqrt{-1}, 5 - \sqrt{-1}$$

(ii) 
$$-\sqrt{3} + \sqrt{-2}$$
.

Solution:

(i) 
$$1 + 5\sqrt{-1}, 5 - \sqrt{-1}$$

Then the other roots are  $1+5\sqrt{-1}$ ,  $5-\sqrt{-1}$ ,  $1-5\sqrt{-1}$ ,  $5+\sqrt{-1}$ . Hence the equation is

$$(x-1+5\sqrt{-1})(x-1-5\sqrt{-1})(x-5-\sqrt{-1})(x-5+\sqrt{-1}) = 0$$

$$\{(x-1)^2 - (5\sqrt{-1})^2\} \left\{ (x-5)^2 - (\sqrt{-1})^2 \right\} = 0$$

$$(x^2 - 2x + 26)(x^2 - 10x + 26) = 0$$

$$x^4 - 12x^3 + 72x^2 - 312x + 676 = 0.$$

(ii) 
$$-\sqrt{3} + \sqrt{-2}$$

Then the other roots are  $-\sqrt{3} + \sqrt{-2}$ ,  $-\sqrt{3} - \sqrt{-2}$ ,  $\sqrt{3} + \sqrt{-2}$ ,  $\sqrt{3} - \sqrt{-2}$ 

$$\{(x+\sqrt{3})^2-(\sqrt{-2})^2\}$$
  $\{(x-\sqrt{3})^2-(\sqrt{-2})^2\}=0$ 

$$(x^{2} + 2\sqrt{3}x + 5)(x^{2} - 2\sqrt{3}x + 5) = 0$$
$$x^{4} - 2x^{2} + 25 = 0.$$

**Example 4.** Solve:  $x^4 - 4x^3 + 8x + 35 = 0$  given that  $2 + i\sqrt{3}$  is a root of it.

Solution.

Since the irrational roots occur in pair,  $2 - i\sqrt{3}$  is also a root.

The factors corresponding to these roots are  $(x-2)^2 - (i\sqrt{3})^2$ 

$$x^2 - 4x + 7$$

Dividing  $x^4 - 4x^3 + 8x + 35$  by  $x^2 - 4x + 7$ , we get the equation  $x^2 + 4x + 5$ 

$$x^4 - 4x^3 + 8x + 35 = (x^2 - 4x + 7)(x^2 + 4x + 5)$$

The roots of the equation are  $2 \pm i\sqrt{3}$ ,  $-2 \pm i$ 

**Example** 5. Solve the equation  $2x^6 - 3x^5 + 5x^4 + 6x^3 - 27x + 81 = 0$  given that one root is  $\sqrt{2} - \sqrt{-1}$ .

Solution.

Then the other roots are  $\sqrt{2}-\sqrt{-1}$ ,  $\sqrt{2}+\sqrt{-1}$ ,  $-\sqrt{2}-\sqrt{-1}$ ,  $-\sqrt{2}+\sqrt{-1}$ 

$$\{(x-\sqrt{2})^2-(\sqrt{-1})^2\}\{(x+\sqrt{2})^2-(\sqrt{-1})^2\}=0$$

$$(x^2-2\sqrt{2}x+3)(x^2+2\sqrt{2}x+3)=0$$

$$x^4 - 2x^2 + 9 = 0$$

Dividing  $2x^6 - 3x^5 + 5x^4 + 6x^3 - 27x + 81$  by  $x^4 - 2x^2 + 9$  we get the equation  $2x^2 - 3x + 9$ 

$$2x^{6} - 3x^{5} + 5x^{4} + 6x^{3} - 27x + 81 = (x^{4} - 2x^{2} + 9)(2x^{2} - 3x + 9)$$

The roots of the equation are  $\sqrt{2} \pm \sqrt{-1}$ , ,  $-\sqrt{2} \pm \sqrt{-1}$ ,  $3\left(\frac{1\pm i\sqrt{7}}{4}\right)$